#### **DIESEL EMISSION CONTROL**



9 July 2008

NOx Control with Retrofits: California Emerging Clean Air Technology Forum Merced, California

Marty Lassen
Director – Commercial Development & Marketing





## **Diesel Engines**

- Good Power
- High Efficiency
- Low Cost to Operate / Maintain
- Emissions
  - ➤ PM, HC, CO
  - > NOx
- Lean-Burn Engines
  - Control PM, HC and CO Emissions with One Set of Technologies
  - Control NOx with a Different Set of Technology





#### **Technology**

- Diesel Oxidation Catalysts LSD / ULSD
  - > 25 to 50% PM, 60+% CO / HC Reduction
- "Partial" Flow Filters LSD / ULSD
  - > 50 to 70% PM, 60+% CO, HC Reduction
- Passive Filters ULSD
  - > >85% PM, 90%+ CO / HC Reduction
- Active Filters LSD / ULSD
  - >85% PM, 0% CO / HC Reduction
- LNC LSD w/ DOC, ULSD w/ DPF
  - > 15 to 25% NOx, 25 85% PM, 60 90% CO / HC Reduction
- EGR LSD w/ DOC, ULSD w/ DPF
  - 40 to 50% NOx, 25 85% PM, 60 90% CO / HC Reduction
- SCR LSD w/ DOC, ULSD w/ DPF
  - 60 to 90% NOx, 25 85% PM, 60 90% CO / HC Reduction





#### Controlling PM, HC and CO

- DOC's, Partial Filters, DPF's
  - Oxidation Process for HC and CO
  - Capture and Oxidation of Soot

#### Controlling NOx

- EGR
  - > Recirculation of Exhaust to Lower Temperature in Cylinder
- LNC, LNT, SCR
  - Use of Reductant (Diesel Fuel or Urea)





Controlling PM, HC and CO



#### **Particulate Matter Oxidation**



# Catalyst





Note: Soluble Fraction, Sulfates and Water are in Vapor form.



# **Particulate Filter - Wall Flow Filter**









# **Controlling NOx**





## **Exhaust Gas Recirculation (EGR)**

- Recirculates engine exhaust back into the combustion chamber to lower temperature in cylinder reducing NOx
- Two Strategies
  - ➤ Low pressure, cooled EGR takes exhaust after it has been through a DPF reintroducing clean exhaust into the combustion chamber: 40 60% NOx reduction for retrofit
  - ➤ High pressure EGR takes exhaust directly from engine out: 30 70% NOx reduction for new engine applications





#### Lean NOx Catalysts (LNC)

- A flow through catalyst that reduces NOx with the injection of diesel fuel over the catalyst, aka, HC SCR.
- LNC catalyst are very temperature dependent
  - > Platinum for low temperature
  - Zeolites for higher temperature
- Retrofit systems usually require both types for about a 20 25%
   NOx reduction with 4 8% fuel penalty





## Lean NOx Traps (LNT)

- A flow through catalyst that adsorbs NOx on to its surface during normal (lean) operation and cycles to rich operation, releasing the stored NOx which is reduced by a separate catalyst layer.
- LNT catalyst contain high levels of Platinum and Rhodium
- LNT are sensitive to even the lowest amount of sulfur in the fuel and must be periodically "regenerated" by raising the exhaust temperature
- LNT technology is not a retrofit solution
- LNT technology is applicable to LHD and MHD new engines





- A flow through catalyst that requires ammonia for reduction of NOx by 50 – 90%+
- Currently all systems inject urea which is converted to ammonia when injected into the exhaust stream
- SCR catalyst typically contain no precious metals
- SCR is a mature, commercial technology that has been used in stationary applications for over 30 years
- SCR technology is applicable to LHD, MHD and MHD new engines and is the likely solution for a number of MHD and HHD platforms in the US
- SCR only systems are in use for Euro 4 and Euro 5 engines
- SCR technology is a retrofit solution and several systems are in verification with the EPA and CARB



















- System Description
- All systems will use STT Controller, Grundfos Urea Dosing System and Siemens NOx sensor
  - 4.0 g NOx System
    - CRT + Vanadium SCR + Ammonia Slip Catalyst
  - 2.5 g NOx System
    - CCRT + Zeolite SCR + Ammonia
       Slip Catalyst









# Selective Catalytic Reduction (SCR)

Ozark / Raley's Truck 1555 (2.5g NOx engine)

| System Description |                                |                    |                                            |
|--------------------|--------------------------------|--------------------|--------------------------------------------|
| Vehicle            | 2005<br>Kenworth               | Injector<br>type   | Grundfos                                   |
| Engine             | 2005 CUM<br>ISX 400 Hp<br>14 I | Sensors            | IFM Efector<br>Kavlico                     |
| CRT                | 8.5 I DOC                      | Primary<br>Purpose | Performance<br>evaluation/<br>Verification |
|                    | 22l 200 cpsi<br>coated fitler  | Installed          | Aug 2007                                   |
| SCR                | 25.5 I Zeolite                 | Other              |                                            |
|                    | 4.2 I ASC                      |                    |                                            |



| 11/16/2007 - 1/23/2008 |       |  |  |
|------------------------|-------|--|--|
| NOx Reduction          | 80.6% |  |  |
| Hours run              | 191.3 |  |  |
| Overall CRT P200       | 78.0% |  |  |
| Overall SCR P200       | 81.1% |  |  |



# Daily Nox Conversion 1 minute Average data Summed for each day





Urea usage for Truck 1555 - The average amount of urea injected every minute is recorded and added up for each day.







Backpressure for Truck 1555 - The peak backpressure readings measured each minute are averaged daily.



## **Technology Verification**



- DOC's Verified EPA, CARB
- Partial Filters Verified EPA, CARB
- Passive Filters Verified EPA, CARB
- Active Filters Electric: verified EPA, CARB
  - Burner: Verified CARB
- Lean NOx Catalyst Verified CARB
- EGR Verified CARB
- SCR EPA/CARB Verified within 6 Months
- LNT Not a Retrofit technology

